Continuum Shape Sensitivity analysis of a mode-I fracture in functionally graded materials

نویسنده

  • B. N. Rao
چکیده

This paper presents a new method for conducting a continuum shape sensitivity analysis of a crack in an isotropic, linear-elastic, functionally graded material. This method involves the material derivative concept from continuum mechanics, domain integral representation of the J-integral and direct differentiation. Unlike virtual crack extension techniques, no mesh perturbation is needed to calculate the sensitivity of stress-intensity factors. Since the governing variational equation is differentiated prior to the process of discretization, the resulting sensitivity equations are independent of approximate numerical techniques, such as the meshless method, finite element method, boundary element method, or others. In addition, since the J-integral is represented by domain integration, only the first-order sensitivity of the displacement field is needed. Several numerical examples are presented to calculate the first-order derivative of the J-integral, using the proposed method. Numerical results obtained using the proposed method are compared with the reference solutions obtained from finite-difference methods for the structural and crack geometries considered in this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A continuum shape sensitivity method for fracture analysis of orthotropic functionally graded materials

This paper presents a new continuum shape sensitivity method for calculating the mixed-mode stress-intensity factors of a stationary crack in two-dimensional, linear-elastic, orthotropic functionally graded materials with arbitrary geometry. The method involves the material derivative concept taken from continuum mechanics, the mutual potential energy release rate, and direct differentiation. S...

متن کامل

Electrical and Mechanical Performance of Zirconia-Nickel Functionally Graded Materials

In the present work, six-layered (Zirconia/Nickel) functionally graded materials were fabricated via powder metallurgy technique (PMT). The microstructure, fracture surface and the elemental analysis of the prepared components were studied, and their linear shrinkage, electrical conductivity, fracture toughness and Vickers hardness were evaluated. The results show that the linear shrinkage of t...

متن کامل

Mixed Mode Crack Propagation of Zirconia/Nickel Functionally Graded Materials

Zirconia-nickel functionally graded materials were obtained by powder metallurgy technique. The microstructure, residual stress, fracture toughness and Vickers hardness were investigated. Mixed-mode fracture response of YSZ /Ni functionally graded materials was examined utilizing the three point bending test and finite element method (Cosmos/M 2.7). The results show that the stress intensity fac...

متن کامل

Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements

Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...

متن کامل

استفاده از روش غنی شده بدون شبکه گلرکین در تعیین پارامتر های شکست صفحات FGM

Stress-intensity factors (SIFs) are the most important parameters in fracture mechanics analysis of structures. These parameters are evaluated for a stationary crack in functionally graded plates of arbitrary geometry using a novel Galerkin based mesh-free method. The method involves an element-free Galerkin method (EFGM), where the material properties are smooth functions of spatial coordinate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005